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Abstract

In this paper we apply a multiobjective optimization model of Smart Growth to land development. The
term Smart Growth is meant to describe development strategies—that do not promote urban sprawl.
However, the term is somewhat open to interpretation. The multiobjective aspects arise when considering
the conflicting interests of the various stakeholders involved in land development decisions: the government
planner, the environmentalist, the conservationist, and the land developer. We present a formulation—
employing linear and convex quadratic objective functions subject to polyhedral and binary constraints for
the stakeholders. The resulting optimization problems are convex, quadratic mixed integer programs that
are NP-complete. We report numerical results with this model for Montgomery County, Maryland, and
present them using a geographic information system (GIS).
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Currently, in land development, there is a move towards intelligent stewardship of natural
resources to avoid urban sprawl. Such development schemes are often called Smart Growth.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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However, this term can be a bit nebulous since what constitutes Smart Growth for one
stakeholder (or stakeholder group) may not necessarily be intelligent management of resources for
another stakeholder. One needs to consider land development with all stakeholders’ interests
taken into account.
Smart Growth may be thought of as the present day incarnation of what was referred to as-

growth management in the 1970s and 1980s [1]. Often, Smart Growth is defined in terms of what it
seeks to accomplish. For instance, the Urban Land Institute defines this term as ‘‘Smart growth
y enhances the economy, protects the environment and preserves or improves a community’s
way of life.’’ [2]. While this definition makes Smart Growth appear desirable, it does not shed
sufficient light on how such growth can be measured. More quantifiable definitions are offered by
Downs [3]; these definitions involve the conservation of open space, mixed use development
convenient to pedestrians and transit access, re-development of aging urban or inner suburban
areas, and the use of boundaries to limit new growth. In the spirit of Downs’ approach towards
quantifiable measures, we define Smart Growth as a development plan leading to the Pareto
optimal value of precisely defined measures identified by stakeholders.
Governments have relied on a host of tools to foster socially beneficial land development along

the lines of Smart Growth, if not explicitly stated. Such tools include: public ownership,
regulatory or educational approaches, or methods that contain financial incentives/disincentives
[4,5]. Areas of application include: public ownership of parks, greenways, development impact
fees, brownfields redevelopment, minimum density zoning, annexation, and purchase or transfer
of development rights [4,6–8]. Unfortunately, these approaches do not account for the goal of
each stakeholder with explicit objective functions. Furthermore, they fail to arrive at a
compromise solution that embodies the zero sum nature of the process, a common case given their
often diametrically opposing views (e.g., develop vs. conserve the land).
To model explicit tradeoffs between stakeholders in this zero-sum setting, as presented in [9], we

consider four main classes of stakeholders: The government planner, The environmentalist, The
conservationist, and The land developer. The resulting mathematical formulation is a
multiobjective optimization problem, which is restricted by general constraints such as land
growth rates and zoning, whose objectives correspond to each of the stakeholders’ interests.
Together with the work in [9], this multiobjective and novel approach applied to Smart Growth
allows regional planners and other interested parties to balance the tradeoffs between the
competing stakeholders.
Unlike the case of single objective optimization in which the total system cost or other system

attribute is optimized, a different notion of Pareto optimality, is needed. A Pareto optimal
solution to a multiobjective optimization problem means that an improvement in one of the
objectives must come at the expense of at least one of the other objectives [10–12]. In the current
Smart Growth setting, a Pareto optimal point corresponds to a particular development plan for
the land parcels under consideration.
Over the years, models have been developed to study issues in land development, urban growth,

or more recently Smart Growth. This is a complex area to analyze, involving many disciplines.
Several approaches have been applied with varying degrees of detail. Thus, the choice for the
Smart Growth modeler is to select just the right amount of detail to capture the inherent tradeoffs
between the different stakeholders and between the system constraints. Too much detail, while
providing a more realistic model, may make the model computationally intractable, and could
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potentially create more narrowly defined, and therefore less useful, results. Too stylized
a model, on the other hand, while more generally applicable and more computationally tractable,
might not provide results that capture the tradeoffs between stakeholders. We believe our
approach, while retaining some crucial details, is a compromise between these two extremes. In
particular, enough detail is used to capture these tradeoffs, yet the model is computationally
tractable.
Other non-optimization methods in land use planning do not always model the behavior

of the stakeholders to measure explicit tradeoffs between them. Other detailed modeling
approaches in land use planning include: statistical forecasting of land use based on historical
trends [13,14], Monte Carlo simulation using population growth and other factors to gauge
quality of life [15], cellular automata where simple rules are applied between neighboring cells to
simulate spatial development of a geographic area [10], and geographic information systems (GIS)
and remote sensing to view urban change from a visual perspective [16]. While these approaches
can be detailed and informative, any tradeoffs are not normatively based. That is, these
approaches do not directly optimize development from each stakeholders’ perspective and then
arrive at a Pareto optimal compromise in the interests of all parties involved, as is done with
our approach.
Other authors have also considered general land development problems from the multiobjective

optimization perspective. These works differ in the specific problem formulations being studied, as
well as in the solution methodologies employed. Formulations involving integer restrictions
and other nonconvexities have often used heuristic methods because of the computational
complexities involved. In these cases, enumeration of the entire Pareto optimal set, while
possibly desirable, is computationally challenging. In the current work, for each set of weights
used to find a Pareto optimal point, we solve a quadratic, mixed integer program. For the
Montgomery county region, this perspective resulted in about 3500 variables (mostly binary) and
over 23,000 constraints. Finding a subset of Pareto optimal points rather than the entire set of
solutions illustrates the significant tradeoffs between the various stakeholders, which involve
conservation of the environment, protection against urban sprawl, and economic benefits. In what
follows we briefly review some selected multiobjective optimization works related to land
development.
Bammi and Bammi’s [17,18] early papers in multiobjective land development presented a

multiobjective optimization model for land use planning in DuPage County, Illinois. They used a
weighted-objectives approach that considered adjacent land uses, travel time, tax costs, negative
environmental impacts, and costs borne by the community. Using a linear programming model
for each of 147 planning regions, they computed acreage totals by land use type, which were then
allocated by planners on a parcel-by-parcel basis. Later, Wright et al. [19] considered a
multiobjective integer programming model for land acquisition. These integer restrictions greatly
complicated the solution methodology and the authors developed a specialized approach given
the possibility of gap points [20], i.e., solutions, which could be missed when using a weighting
method. Their model considered three objectives: area of a cell, acquisition cost, and compactness
of the developed cells. The largest problem they considered involved 30 cells which had 146 binary
variables and 69 constraints. At that time this problem was limited by general-purpose
multiobjective integer programming algorithms. Benabdallah and Wright [21] later extended
various parts of this work. Next, Gilbert et al. [22] developed a four-objective optimization model
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that also contained integer restrictions on the variables. Their objectives included: the acquisition
and development cost, the amenity and detractor distances, and the shape objective. Due to their
formulation’s computational complexity, they developed an interactive, partial enumeration
scheme. This method was applied to solve land development plans for Norris, Tennessee,
represented by 900 cells of approximately 2.5 acres each. More recently, the book edited by Beinat
and Nijkamp [23] described a good collection of multiobjective land use papers with GIS
components. Lastly, the recent work by Moglen et al. [9] considered a multiobjective integer
programming problem using 810 parcels in Montgomery County, Maryland. The positions of
four stakeholder classes—environmentalist, conservationist, government planner, and land
developer—were considered in combination with certain global constraints, such as growth rates
by each of five land use zones.
The current work extends [9] in several important ways and provides more of a mathematical

perspective. First, using a different database of 913 undeveloped and 4837 developed parcels for
Montgomery County, Maryland, the current work includes specific integer constraints to
classify unassigned parcels into one of the five zones: residential low density, residential medium
density, residential high density, commercial, or industrial. The previous work used a heuristic to
assign unclassified parcels—so-called Rural Density Transfer—to one of these zones prior to
running the optimization. All parcels 500m from main roads were assigned an industrial land use
consistent with land use elsewhere in the study region. Remaining patches of rural density transfer
zoned areas were assigned one of the other land use categories in an ad hoc manner; thus, re-
assigned parcels took on the same zoning category as nearby parcels already zoned in that
category.
In contrast, the current work, where the model chooses which zone is appropriate for each

unassigned parcel, is more efficient from the land use perspective but does represent a
computational challenge. For example, for each of these 512 unassigned parcels, five additional
binary variables (one for each of the zones) need to be included. Second, the current work, unlike
[9], also includes a set of constraints to ensure that these unassigned parcels are only selected when
necessary, with the preference given to parcels already classified into one of the five zones. Third,
the current work, also unlike [9], considers the compactness of the developed area as an objective
for the government planner. All else being equal, a more compact area is better from the
perspective of the government planner since it means that less infrastructure (e.g., roads, water
distribution network) is needed. Other works [19,22] have considered compactness in a variety of
ways that we extend in the current work. The current approach minimizes the diagonal of the
outer rectangle of the developed parcels and results in a convex quadratic objective function. The
resulting optimizations from the weighting method [24] are generally instances of large-scale,
quadratic mixed integer programs (QMIPs). The class of QMIPs is NP-complete [25]. However,
the relaxed version of these QMIPS are simply convex, quadratic programs with linear constraints
and thus represent a reasonable computational burden given the state of the art in optimization
solvers. Our novel approach creates a reasonable balance between representing compactness and
computational considerations.
The rest of this paper is organized as follows: Section 2 presents the Smart Growth model;

Section 3 provides several theoretical results for the multiobjective formulation; Section 4
describes selected numerical results for Montgomery Country, Maryland; and Section 5
summarizes our findings.
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2. The Smart Growth multiobjective optimization problem

To fairly represent the land development process, we model the objectives of four main
stakeholder groups with competing objectives: government planners, environmentalists,
conservationists, and land developers. At present, competing stakeholder objectives are not
considered in most Smart Growth designs. Instead, a range of best management practices might
be used. Examples include: incorporating porous pavement, rain gardens, or grassed swales [26] in
an effort to minimize the impact of development. Rigorous comparisons of multiple alternative
development patterns are generally not considered either. In fact, Smart Growth may be made
more complicated by the advocates of this strategy. Balancing the interests of the diverse
stakeholders from a multiobjective optimization perspective involves some sort of compromise
strategy that can be analyzed over many different time periods. The current work considers a
snapshot of the tradeoffs between these stakeholders.
2.1. An overview of the multiobjective optimization model

Multiobjective optimization problems can be stated as

min ff 1ðxÞ; . . . ; f kðxÞg

s:t: x 2 F ;
(1)

where f 1; . . . ; f k are given (real-valued) objective functions defined on some feasible region
F � Rn. When the preferences of the ultimate decision-maker are not stated, generating methods
are used to obtain Pareto optimal points to (1). Two common techniques employed to obtain
elements of this Pareto optimal set are: the weighting method and the constraint method [24].
With the former approach, positive weights are applied to each objective and the sum of these
weighted objectives is then minimized subject to the original feasible region F. A solution of this
weighted subproblem is a Pareto optimal point of the original multiobjective optimization [11,
Theorem 3.1.2]. Pareto optimal points can be generated by appropriate choice of these weights,.
However, no preferences are imputed with this method. That is, the weights do not correspond to
how much each objective is valued; instead, the weights are a mechanism to obtain Pareto
solutions. The weighted subproblem is given as

min
Pk
i¼1

wif iðxÞ

s:t: x 2 F ;

(2)

where wi40; i ¼ 1; . . . ; k.
In contrast, the constraint method arbitrarily chooses one of the objectives to optimize, creates

additional constraints that bound the values of the other objectives, and solves the resulting single
objective problem. At optimality, if these additional constraints are binding, then the solution
corresponds to a Pareto optimal point [24]. Iterative procedures for either of these two approaches
can be used to generate a reasonable approximation to the Pareto optimal set, which can then be
analyzed by the decision-maker. Certain duality gap points can exist with the weighting method if
the Pareto optimal set is not convex. As a result, certain Pareto solutions cannot be obtained by
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solving an appropriate weighting problem. These solutions, however, can be found by the
constraint method, but sometimes with a large computational burden [20]. In spite of duality
gaps, the weighting method is a simple approach to generate different Pareto optimal solutions
[11,27] (i.e., a grid of weights). Moreover, if enumerating only a representative subset of the entire
Pareto optimal set is the goal, as in this study, the weighting method is reasonable.
For the multiobjective optimization problem concerning Smart Growth, we first designate S as

the set of indices for each of the parcels of land that might be developed. For a typical parcel i 2 S

di ¼
1; if parcel i is developed;

0; otherwise:

(

Thus, fractional development of a parcel is not allowed. Since there are four stakeholder groups
considered, the number of objectives is k ¼ 4. Additionally, for computational reasons, we
consider only linear constraints with some binary variables (e.g., di). Therefore, the form of the
multiobjective optimization is

min ff GPðxÞ; f EðxÞ; f CðxÞ; f LDðxÞg

s:t: Axpb;
(3)

x1
i 2 f0; 1g; i ¼ 1; . . . ; n1,

x2
j 2 ½lj; uj�; j ¼ 1; . . . ; n2,

where f GPðxÞ; f EðxÞ; f CðxÞ; f LDðxÞ are, respectively, the objective functions for the government
planner, the environmentalist, the conservationist, and the land developer; x ¼ ðx

1

x2Þ is the set of n

decision variables broken out into n1 that are binary ðx1Þ and n2 that are bounded above and
below by the vector of lower bounds l and upper bounds u and specified as ðx2Þ. Lastly, the linear
inequalities Axpb signify important system constraints that must be met (e.g., zoning growth
patterns) as part of this multiobjective optimization.
There are many reasonable choices for the objectives f GPðxÞ; f EðxÞ; f CðxÞ; f LDðxÞ. For example,

the government planner could seek to confine development in prescribed growth areas,
minimizing the extent to which new infrastructure can be built. A similar statement applies to
the other stakeholders. Also, there is some degree of flexibility in the constraints in (3).
Independent of the level of detail, the government planner is trying to maximize the benefit to

society at large by selecting high value or cost-minimizing development. The environmentalist is
trying to minimize the impact on the environment, but realizes some development is needed; thus,
the environmentalist will choose the parcels to be developed according to this guiding principle.
The conservationist takes more of a ‘‘not in my back yard’’ (NIMBY) approach to protect
selected aspects of the environment. Lastly, the land developer is driven by the profit incentive and
will select those parcels that achieve the greatest financial benefit. The multiobjective model will
optimize each of these broad objectives simultaneously while also satisfying certain system
constraints.
We have selected just one objective per stakeholder and have chosen linear objectives with the

exception of the government planner whose objective (compactness) can be modeled as a convex,
quadratic function. The resulting weighted problems of form (2), which we use to generate a
representative subset of Pareto solutions, are convex, quadratic mixed integer programs. In many
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cases, these problems are tractable and solutions can be obtained in minutes. With this
approach, the level of detail benefits the decision-makers involved in planning models
because they can quantify actual tradeoffs, ordinarily very hard to measure, and can therefore
make more informed decisions. Essentially, the role of operations researchers/management
scientists in planning is to abstract very detailed considerations into something retaining a
sufficient level of detail, yet is tractable. Our level of detail retains a certain degree of realism
important for analytical reasons, while affording reasonable computational times, necessary for
making our approach usable as a framework for the Smart Growth initiative. Additionally,
enumeration of the entire Pareto set is not needed since a representative subset conveys the
important tradeoffs.
2.2. The government planner

The government planner has several goals in land allocation consistent with Smart Growth.
First, the planner is interested in developing key priority funding areas. These sections have been
targeted by the state to promote redevelopment of blighted urban areas and maximize existing
capacity for facilities (e.g., water, sewer). Second, the planner is interested in minimizing the low
density zone land parcels to minimize sprawl. Third, the planner prefers to keep the land that is
developed in as compact an area as possible. In this work only the compactness objective is
considered.
2.2.1. Compactness measure
There have been several mathematical approaches to minimizing the spread of development or

maximizing the compactness of the development area, e.g., [19,22]. In this paper, we measure the
extent of the development area as the length of the diagonal of the smallest rectangle enclosing the
developed parcels, subject to a particular axis orientation described in the last part of this section.
The goal is then to minimize the square of this length.
To make this notion of compactness clear, first suppose that the set of parcels fits into a

rectangular grid with rows and columns assigned to each parcel. This method does not imply that
each of the land parcels is rectangular or even regularly shaped, just that there is a rectangular
outer envelope surrounding the parcels in questions. The rows and columns can relate to
longitude and latitude or some other geographical designation, as appropriate. Consider the
following depiction of this scheme in Fig. 1 with 26 columns and 15 rows.
For each parcel i:
�
 rowS(i) ¼ the row number south of all points in parcel i and closest to the southernmost point
in parcel i.

�
 rowN(i) ¼ the row number north of all points in parcel i and closest to the northernmost point
in parcel i.

�
 colE(i) ¼ the column number east of all points in parcel i and closest to the easternmost point in
parcel i.

�
 colW(i) ¼ the column number west of all points in parcel i and closest to the westernmost point
in parcel i.
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Fig. 1. Depiction of rectangular grid around parcels.
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For example, for parcel 6 in Fig. 1, rowSð6Þ ¼ 12, rowNð6Þ ¼ 15, colEð6Þ ¼ 20, colWð6Þ ¼ 12,
noting, respectively, parcel 6’s southern, northern, eastern, and western borders exactly coincide
with these values.
We designate the value of the variable rN as the row index, which is north of all developed

parcels but closest to the northernmost developed parcel. Also rS refers to the row index, which is
south of all developed parcels but closest to the southernmost developed parcel. Similarly, cE; cW
refer to the eastern and westernmost column indices (respectively) for this rectangle. Thus, as
indicated in Fig. 2 ðrS; cWÞ is the southwestern corner of the box, ðrS; cEÞ is the southeastern corner,
and ðrN; cWÞ, ðrN; cEÞ are, respectively, the northwestern and northeastern corners. Formally, these
relationships for rS; rN; cW; cE are:

rN ¼ maxfrowNðiÞ j di ¼ 1g, (4a)

rS ¼ minfrowSðiÞ j di ¼ 1g, (4b)

cE ¼ maxfcolEðiÞ j di ¼ 1g, (4c)

cW ¼ minfcolWðiÞ j di ¼ 1g. (4d)

These relationships can be encoded in terms of linear constraints:

rS � rowSðiÞpð1� diÞM, (5a)

rowNðiÞ � rNpð1� diÞM, (5b)

cW � colWðiÞpð1� diÞM, (5c)

colEðiÞ � cEpð1� diÞM, (5d)

where M is a suitably large positive constant. In each developed parcel rS represents the
southernmost row index (or just below it) since di ¼ 1) rSprowSðiÞ. When the parcel is
undeveloped, we have di ¼ 0) rSprowSðiÞ þM, which, based on the value of M, provides no
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restriction on rS. We want equality holding for at least one index i for a developed parcel in (5a), a
natural consequence as shown in Section 3; the logic for the other three variables follows similarly.
Realistic row-column bounds on the variables are:

0prS; rN; cW; cE. (5e)

When considering a database of both undeveloped parcels and already developed ones, we do
not actually need the variables di for each of the previously developed parcels. All such variables
would have a value of one and could simply be incorporated into (5a)–(5d). For example, (5a)
reduces to rS � rowSðiÞp0 if parcel i is already developed. When a large number of parcels are
already developed (as was the case in our database), this step represents a huge savings in the
number of binary variables needed and makes the computations more reasonable.
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The length of the diagonal of the rectangle containing all the parcels selected for development is
given by

max _dist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrN � rSÞ

2
þ ðcE � cWÞ

2

q
. (6)

Without loss of generality, the squared distance

min max _dist_sq ¼ ðrN � rSÞ
2
þ ðcE � cWÞ

2 (7)

can be minimized.

2.2.2. Other considerations concerning compactness
Besides the compactness measurement in (7), the L1 distance, i.e.,

min L1_dist ¼ jrN � rSj þ jcE � cWj ¼ ðrN � rSÞ þ ðcE � cWÞ (8)

can also be used in light of the fact that rNXrS and cEXcW. While use of (7) results in a convex,
quadratic mixed integer program as the weighting method subproblem, use of (8) creates a mixed
integer linear program. The preference of (7) over (8) is because of the size of the developed area
via the diagonal of the outer rectangle as compared to the sum of the two sides, i.e., half the
perimeter when (8) is used. Also, employing the diagonal relates to the maximum distance that
infrastructure (e.g., roads, pipes, power lines) would need to be installed. Minimizing this distance
would be advantageous from the planner’s point of view.
An alternative compactness objective, such as minimizing the area of the outer rectangle, i.e.,
ðrN � rSÞðcE � cWÞ, while initially attractive, can be nonconvex, and thus inappropriate for use
with standard multiobjective solution methods such as the weighting method. Consequently, (7)
has computational advantages over these alternative formulations as well.
Fig. 3. (a) (Left) Compactness measured with North–South axis. (b) (Right) Compactness measured with axes rotated

401.
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The results of the optimization depend on the orientation of the axes when measuring
compactness. Consider the case presented in Fig. 3. Fig. 3a presents a subset of the parcels selected
without rotating the axes, and Fig. 3b presents the same set with the axes rotated 401.
Fig. 3b presents a rectangle that is taller and wider, resulting in a measure of compactness larger

than in Fig. 3a. The extreme points that define the outer rectangle account for this difference. For
another angle, the outer rectangle might be smaller.
However, this orientation-dependent aspect of the compactness measure can be used to the

planner’s advantage. Consider the case where the planner is interested in guiding development
along a northwest–southeast corridor. By selecting a certain subset of the developed parcels
(typically only a few, key ones must be chosen by the planner), along with a suitable change in axis
rotation, the compactness rectangle determined by (5a)–(5d) can be shifted, as in Fig. 3b. The
result is a preference for developed parcels along this designated corridor. For example, consider
how Fig. 4 has circled four key parcels and a 401 shift of the axes to promote compact
development along the northwest–southeast corridor.
In a slightly modified notion of compactness, we suppose that the area in question is divided

into Q subdivisions where a typical one is indexed by q 2 f1; 2; . . . ;Qg. The particular application
will determine the appropriate number of subdivisions since the planner may want to promote a
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compactness measure separately for each one.1 This choice is important if there are already
developed parcels in the corners of the overall land area to be considered. To circumvent this
problem, one can subdivide the area to allow for compactness to be determined within the
separate subdivisions. The resulting modified notion of compactness is as follows. First, we let
max _dist_sqq ¼ ðrN;q � rS;qÞ

2
þ ðcE;q � cW;qÞ

2 with rN;q; rS;q; cW;q; cE;q defined analogously as in (1)
but specific to subdivision q. Then, the following constraints are enforced:

rS;q � rowSðiÞpð1� diÞM; for all i in subdivision q, (9a)

rowNðiÞ � rN;qpð1� diÞM; for all i in subdivision q, (9b)

cW;q � colWðiÞpð1� diÞM; for all i in subdivision q, (9c)

colEðiÞ � cE;qpð1� diÞM; for all i in subdivision q, (9d)

0prS;q; rN;q; cW;q; cE;q; for subdivision q. (9e)

Constraint (9) then replaces (5) and the objective function (7) is replaced by

XQ

q¼1

max _dist_sqq ¼
XQ

q¼1

ðrN;q � rS;qÞ
2
þ ðcE;q � cW;qÞ

2 (10)

which is to be minimized. Incorporating subdivisions into the model is mostly a tool for the
planner. On the computational side, allowing for subdivisions generates both more variables and
more constraints, resulting in a more computationally challenging problem.

2.3. The environmentalist

The environmentalist has several objectives that can be optimized: maximizing the distance of
developed land to streams to lessen the environmental impacts, concentrating development in
hydrological unit codes (HUCs) that already have had substantial development, and minimizing
the global change in imperviousness of the land development. We concentrate on the
imperviousness measure, identified by past researchers (e.g. [28,29]), as an effective index of
urban impact. As the level of imperviousness increases, the streams where the impervious area
drains experience negative impacts, such as increased high flows, decreased base flows, thermal
shocks, and greater nutrient and pollutant loads [29–31]. Since the US Geological Survey’s
National Land Cover Database (NLCD), provides a spatially explicit account of imperviousness
across the country at a resolution of 30m [32], imperviousness has now become a readily
measured quantity. Consequently, the following objective is used for the environmentalist:

min
X
i2S

D_imperviareaidi, (11)

where D_impervi is the change in imperviousness if the parcel is developed and areai is the total
area of the parcel.
1This strategy may also include separate axis orientation for each subdivision.
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2.4. The conservationist

The conservationist occupies the most environmentally friendly position along the spectrum of
interests of the four stakeholders. This stakeholder is adamant about protecting certain key
parcels denoted by the set ~S from development. In terms of an objective function, this need leads
to:

min
X
i2 ~S

areai di, (12)

i.e., minimize the total area of environmentally sensitive parcels to be developed to protect the
flora and fauna in these areas. This stance is extreme since the conservationist’s objective is
optimized if absolutely no development takes place within the key parcels identified by this
stakeholder. Examples of this stance persistently appear in the media when individuals try to halt
planned development in locations they wish to protect. A current example in Montgomery
County, Maryland, is the Eyes of the Paint Branch, a watershed association opposed to the
planned construction of a major highway that will encroach on a stream of naturally reproducing
trout.

2.5. The land developer

The developer is modeled to maximize the total value of the developed parcels where the value
is calculated for a parcel i:2

valuei ¼ 0:20

avg_salesLD �
areai

densityLD

� �
if parcel i is low density; residential;

avg_salesMD �
areai

densityMD

� �
if parcel i is medium density; residential;

avg_salesHD �
areai

densityHD

� �
if parcel i is high density; residential;

avg_sales_sq_areaCOM � ðaCOM þ bCOMareaiÞ if parcel i is commercial;

avg_sales_sq_areaIND � ðaIND þ bINDareaiÞ if parcel i is industrial;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(13)

where
�

2

ori
3

density is the number of acres per unit (e.g., 1 acre/unit for residential low density);3
�
 valuei is the value of parcel i if developed (US$) consistent with industry standards; we take
80% of this value as costs so the net value is 20% of the right-hand side of (13) enclosed in the
braces; we have assumed that this 80% cost is already taken out in what follows;

�
 avg_salesLD, avg_salesMD, avg_salesHD is the average sales dollars/unit for low density, medium
density, and high density residential parcels taken in the recent years, respectively (see Table 1);
The average sales per square area value (avg_sales_sq_area) used square feet is the square area in question given the

ginal form of the data with 1 square foot equal to 0.0929m2.

In this sense, density is the inverse of what is sometimes used, e.g., units/acre, 1 acre equals 0.405 h.
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Table 1

Average sales by residential zone

avg_salesLD avg_salesMD avg_salesHD

$449,540 $291,366 $256,658
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�
 areai

densityLD
; areai

densityMD
; areai

densityHD
are the estimates for the maximum number of units possible

on the parcel if it is a low density, medium density, or high-density residential parcel,
respectively;

�
 avg_sales_sq_areaCOM, avg_sales_sq_area_IND are the average ratio of sales dollars for a unit
to square area of the structure for commercial and industrial parcels, respectively;

�
 aCOM þ bCOMareai; aIND þ bINDareai are statistically estimated relationships between the area
of the parcel and the square area for commercial and industrial parcels, respectively, useful for
predicting the typical area of structures on yet undeveloped parcels.
Parcels are grouped into the following sets:

if zoning codei ¼

‘‘11’’ then parcel i is designated as a 1 acre low-density residential lot;

the set of parcels is S11;

‘‘12’’ then parcel i is designated as a 1=4 acre medium density

residential lot; the set of parcels is S12;

‘‘13’’ then parcel i is designated as a 1=8 acre high-density residential

lot; the set of parcels is S13;

‘‘14’’ then parcel i is designated as a commerical lot; the set of

parcels is S14;

‘‘15’’ then parcel i is designated as an industrial lot; the set of

parcels is S15; otherwise then parcel i’s designation is

unassigned and is to be decided upon by the model;

the set of parcels is S99:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

(14)

For each parcel i 2 S99, hereafter called an unassigned parcel, the following constraint
is needed:

di ¼ RLDi þRMDi þRHDi þ COMi þ INDi for all i 2 S99, (15)

where RLDi;RMDi;RHDi;COMi; INDi 2 f0; 1g for all i 2 S99.
These variables represent whether the unassigned parcel is selected to be residential low density,

residential medium density, residential high density, commercial, or industrial, with exactly one of
these choices made if the parcel is developed. Consequently, the objective function for the
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developer becomes:

max
X
i2S11

valuei di þ
X
i2S12

valuei di þ
X
i2S13

valuei di þ
X
i2S14

valuei di þ
X
i2S15

valuei di

þ
X
i2S99

ðvaluei RLDi þ valuei RMDi þ valuei RHDi þ valuei COMi þ valuei INDiÞ. ð16Þ

2.6. Additional constraints

2.6.1. Growth rates on number of units and acres by zone

Based on 5-year projections for growth rates of number of housing units for residential areas
and hectares (acres) for commercial and industrial sites, constraints that provide lower and upper
bounds for these target values are included. The lower and upper bounds represent, respectively,
�20% and +20% of these rates. We note that each of these designations takes parcels from a
fixed set (i.e., for RLD it’s 11), as well as from the set of unassigned parcels (i.e., code equal to 99).
Consequently, realistic bounds on new development for the residential low density parcels are:

minRLDp
X
i2S11

unitsi di þ
X
i2S99

unitsi RLDipmaxRLD, (17a)

where minRLD and maxRLD represent, respectively, the minimum and maximum number of units
to be developed, and unitsi represents the positive number of units that can be developed for
parcel i. Similar constraints for the other four zones are:

minRMDp
X
i2S12

unitsi di þ
X
i2S99

unitsi RMDipmaxRMD, (17b)

minRHDp
X
i2S13

unitsi di þ
X
i2S99

unitsi RHDipmaxRHD, (17c)

minCOMp
X
i2S14

acresi di þ
X
i2S99

acresi COMipmaxCOM, (17d)

minINDp
X
i2S15

acresi di þ
X
i2S99

acresi INDipmaxIND, (17e)

where the minimum and maximum parameters are defined analogously, except for the commercial
and industrial parcels, where these values refer to hectares (acres) based on the number of acres
acresi for the parcel.

2.6.2. First develop assigned parcels for a zone

Another set of constraints involving the classification of the unassigned parcels S99 ensures that
these parcels are not developed when there are sufficient units in the existing pool of parcels. The
rationale is the bureaucratic effort needed to subdivide and rezone large essentially unzoned land,
i.e., rural density transfer, represents a significant impediment to development. Consequently, all
undeveloped but acceptably zoned parcels will undergo development first. This logic is consistent
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with minimizing the bureaucratic burden of establishing zones for unassigned parcels. These
restrictions can be enforced with the constraints:X

i2S99

RLDi unitsipMyRLD;
X
i2S11

unitsi �minRLDpMð1� yRLDÞ; yRLD 2 f0; 1g, (18a)

where M is a suitably large positive number and the residential low density zone is represented.4

We see that, for example, if
P

i2S11
unitsi4minRLD with enough parcels in the assigned pool for

residential low density, then necessarily yRLD ¼ 0, which forces RLDi ¼ 0; for each i 2 S99, or
that no units from unassigned parcels get converted to residential low density and none are
developed. Conversely, if

P
i2S11

unitsipminRLD, then the binary variable yRLD can have a value
of either 0 or 1. When a value of 1 is chosen, since M was chosen sufficiently large, no restrictions
are posed on the potential residential low-density parcels coming from the unassigned group.
Otherwise, when a value of 0 is selected, none of these other parcels are converted to residential
low density. The former case, all things being equal, will be selected when

P
i2S11

unitsipminRLD,
since it allows for a large, feasible region, and hence a better objective function value. Similar
reasoning holds for the other four zones based on these four constraints:X

i2S99

RMDi unitsipMyRMD;
X
i2S12

unitsi �minRMDpMð1� yRMDÞ; yRMD 2 f0; 1g, (18b)

X
i2S99

RHDi unitsipMyRHD;
X
i2S13

unitsi �minRHDpMð1� yRHDÞ; yRHD 2 f0; 1g, (18c)

X
i2S99

COMi acresipMyCOM;
X
i2S14

acresi �minCOMpMð1� yCOMÞ; yCOM 2 f0; 1g, (18d)

X
i2S99

INDi acresipMyIND;
X
i2S15

acresi �minINDpMð1� yINDÞ; yIND 2 f0; 1g. (18e)

The next set of constraints involving the unassigned parcels ensures that all the assigned ones,
i.e., those in S11;S12;S13;S14;S15, are used completely if there is an insufficient number relative to
the lower bounds in (17). The rationale for these constraints is similar to the logic in the previous
section. For the constraints below, N is a suitably large positive number, and using the residential
low-density parcels as an example results in

minRLD �
X
i2S11

unitsipNð1� wRLDÞ;
X
i2S11

unitsi �
X
i2S11

unitsi dipNwRLD; wRLD 2 f0; 1g.

(19a)

This constraint shows, for example, that if the existing residential low-density units S11 are
insufficient to meet even the minimum growth goal of minRLD, that is if minRLD4

P
i2S11

unitsi, then
the binary variable wRLD must equal 0. This result in turn implies

P
i2S11

unitsip
P

i2S11
unitsi di. In
4If, in a particular implementation of our proposed model, pre-processing of the data before sending it to a solver was

considered, certain speedups could be used. For example, forcing RLDi ¼ 0 if
P

i2S11
unitsiXminRLD. These and other

implementation-specific details have been omitted in order to present the most general form of the model without

resorting to pre-processing of any data.
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combination with the fact that the inequality
P

i2S11
unitsi dip

P
i2S11

unitsi is always true, the desired
result of

P
i2S11

unitsi di ¼
P

i2S11
unitsi or that di ¼ 1; 8i 2 S11 follows since there is always a

positive number of units on each parcel. Similar logic applies to the other four zones. Conversely,
when there is a sufficient number of residential low-density units, i.e., minRLDp

P
i2S11

unitsi, wRLD

can equal either 0 or 1. A value of 0 will force di ¼ 1;8i 2 S11 since
P

i2S11
unitsip

P
i2S11

unitsi di, a
value of wRLD equal to 1 will place no constraints on these units. All things being equal, a value of
wRLD equal to 1 will be preferred by the model since it allows for a larger feasible region. Similar
variables and constraints also hold for the other four zones, resulting in these constraints:

minRMD �
X
i2S12

unitsipNð1� wRMDÞ;
X
i2S12

unitsi �
X
i2S12

unitsi dipNwRMD; wRMD 2 f0; 1g,

(19b)

minRHD �
X
i2S13

unitsipNð1� wRHDÞ;
X
i2S13

unitsi �
X
i2S13

unitsi dipNwRHD; wRHD 2 f0; 1g,

(19c)

minCOM �
X
i2S14

acresipNð1� wCOMÞ;
X
i2S14

acresi �
X
i2S14

acresi dipNwCOM; wCOM 2 f0; 1g,

(19d)

minIND �
X
i2S15

acresipNð1� wINDÞ;
X
i2S15

acresi �
X
i2S15

acresi dipNwIND; wIND 2 f0; 1g.

(19e)

2.7. The multiobjective optimization model

The resulting multiobjective optimization problem for Smart Growth is:

min z1 ¼
XQ

q¼1

ðrN;q � rS;qÞ
2
þ ðcE;q � cW;qÞ

2
ðplannerÞ,

min z2 ¼
X
i2S

ðD_imperviÞðareaiÞdi ðenvironmentalistÞ,

min z3 ¼
X
i2S̄

areai di; ðconservationistÞ,

max z4 ¼
X
i2S11

valuei di þ
X
i2S12

valuei di þ
X
i2S13

valuei di þ
X
i2S14

valuei di þ
X
i2S15

valuei di

þ
X
i2S99

ðvaluei RLDi þ valuei RMDi þ valuei RHDi þ valuei COMi þ valuei INDiÞ

ðdeveloperÞ
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s:t.

ð9Þ; ð15Þ; ð17Þ2ð19Þ

di 2 f0; 1g; 8i 2 S

RLDi;RMDi;RHDi;COMi; INDi 2 f0; 1g; 8i 2 S99. ð20Þ

Pareto optimal solutions to (20) can be obtained, among other approaches, via the weighting
method [24]. In the weighting method, each objective is multiplied by a positive weight and then
summed to form a single objective weighted problem whose feasible region is the same as (20).5

Different Pareto optimal points can be generated by choosing different weights. For nonconvex
problems there may be duality gap points, which are Pareto optimal solutions that cannot be
obtained via this method (other approaches can be used in this case); for an example of these
duality gaps, see [20, p. 560]. Since we are not concerned with enumerating every Pareto optimal
solution, these gap points do not pose a problem in this setting.
3. Existence results

This section presents some theoretical results concerning the existence of Pareto optimal
solutions to the multiobjective optimization model (20).
Both the objective function and the constraint set of (20) are convex which is important for

computational reasons. This result will ensure that all local solutions are in fact global ones [33].
Consequently, all the pieces of the weighted objective function are linear, except for the
compactness measure, which is convex quadratic, resulting, as shown below, in a convex
quadratic objective function overall. The constraints are linear except for the binary restrictions
on selected variables. Thus, a mixed integer convex quadratic problem results, whose relaxed
version is a convex quadratic program.

Theorem 1. The weighted objective w1z1 þ w2z2 þ w3z3 � w4z4 is convex in its variables as long as

the weights w1;w2;w3;w4X0.

Proof. (see appendix).

We still need to ensure that (9a)–(9d) accurately define the borders of the rectangle around the
developed parcels. This result is shown in the next theorem.

Theorem 2. Assuming the weighted problem to (20) has an optimal solution, and if Assumption 1
holds, then constraints (9a)–(9d) ensure that rN;q; rS;q; cE;q; cW;q correspond respectively to the
northernmost, southernmost, easternmost, and westernmost borders of all the developed parcels in

subdivision q for q ¼ 1; . . . ;Q.
5The developer’s objective which is to be maximized is first multiplied by �1 to convert it to an appropriate

minimization, consistent with the other objectives.
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Fig. 5. Montgomery County, Maryland.
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Proof. (see appendix).

The main result shown in Theorem 3 then follows as an immediate consequence of the
weighting method, assuming that at least one subproblem of form (2) has a solution.

Theorem 3. The Smart Growth problem (20) always has a Pareto optimal solution.
4. Numerical results for Montgomery County, Maryland

This section presents numerical results based on solving the multiobjective optimization
problem (20) for land parcels in Montgomery County, Maryland. Pareto optimal solutions to (20)
can be obtained as solutions to the weighted version of the problem, which are instances of
QMIPs with about 3500 variables (most of which are binary) and over 23,000 constraints.
4.1. Database of land parcels for Montgomery County, Maryland

Montgomery County, Maryland, is located north of Washington, DC and borders the state of
Virginia, as shown in Fig. 5. Covering some 1300 km2 (500miles2) of Maryland and occupied by
over 873,000 inhabitants,6 this county is the most populous in Maryland. Using a database of
Montgomery County land parcel information in GIS format, both current and potential
development of the area were analyzed. Fig. 6 shows the northwestern section of the county used
in this study, comprising our database of some 913 undeveloped and 4837 previously developed
parcels.
6According to the 2000 Census survey; source: http://www.co.mo.md.us/cntymap.htm

http://www.co.mo.md.us/cntymap.htm
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Fig. 6. Montgomery County, Maryland database segmented by previously developed parcels (gray) and those

undeveloped yet available for development (white).
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For the purposes of examining the compactness objectives, the county was divided into four
subdivisions or quadrants (Q1, Q2, Q3, Q4) as shown in Fig. 7a. Since the borders of the parcels
were not perfectly aligned with the quadrant divisions, the centroid of each parcel was used to
determine into which quadrant the parcel should be assigned. If the centroid was within the
bounds of the quadrant, then the whole parcel was assigned to that quadrant. We note that
quadrant 3 (Q3), all things being equal, had the greatest chance for significant compact land
development given its relatively small number of previously developed parcels. After partitioning
the parcels based on this centroid rule, the resulting quadrants and their associated parcels appear
in Fig. 7b. Once the parcels were assigned to the quadrants, the parcel coordinates were
normalized for more balanced results in the weighted optimizations. Specifically, the minimum
northing (row) and easting (column) values among all parcels were deducted, respectively, from
the northing and easting coordinates for each parcel. Thus, the westernmost point of the
westernmost parcel of the set had a horizontal coordinate of zero; similarly, the southernmost
point of the southernmost parcel had a vertical coordinate of zero.
Based on our data set of residential parcels, we estimated the following parameters per unit.
The densities of the residential areas, consistent with definitions used by both the Maryland

Department of Planning [34] and the Natural Resources Conservation Service [35], were taken as
follows where ‘‘du’’ means dwelling unit, ‘‘ha’’ is hectare’’, and ‘‘ac’’ is acre (Table 2).
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Fig. 7. (a) (Top) Division of Montgomery County study. (b) (Bottom) Parcels assigned to each quadrant.
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Based on our data set of commercial and industrial parcels, we estimated the following
parameters (Table 3):
To illustrate the effect of the environmentally sensitive parcels involved in the conservationist’s

objective function, we selected 70 parcels from our database. Their locations are shown in Fig. 8,
along with the relative number in each of the quadrants as indicated in Table 4.
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Table 2

Land densities by residential zone

Low density Medium density High density

2.47 du/ha (1 du/ac) 9.88 du/ha (4 du/ac) 19.8 du/ha (8 du/ac)

Table 3

Commercial and industrial estimated parameters

Zoning category avg_sales_sq_area a b

Commercial 315.6 15,553 9736.9

Industrial 192.8 9242.2 11,604

Fig. 8. Set of environmentally sensitive parcels.
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4.2. Nine cases

The current and subsequent sections describe findings associated with Pareto optimal land
development solutions to (20) using the weighting method. The resulting QMIPs were generated
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Table 4

Number of environmentally sensitive parcels distribution by quadrant

Quadrant Number of parcels

1 0

2 32

3 35

4 3

Total 70

Table 5

Weights assigned to each stakeholder’s objective

Case Planner

(compactness)

Environmentalist

(imperviousness

change)

Conservationist

(env. sensitive area)

Developer

(profit)

Relative

gap

1 Planner alone 1 0 0 0 5e�005

2 Planner Pareto 1 0.001 0.001 0.001 5e�005

3 Environmentalist alone 0 1 0 0 5e�005

4 Environmentalist Pareto 0.001 1 0.001 0.001 5e�005

5 Conservationist alone 0 0 1 0 5e�005

6 Conservationist Pareto 0.001 0.001 1 0.001 5e�005

7 Developer alone 0 0 0 1 5e�005

8 Developer Paretoa 0.001 0.001 0.001 1 5e�004

9 All perspectives 1 1 1 1 5e�005

aA relative gap of 5e�005 was not achievable within a reasonable amount of time. We thus slightly relaxed the

problem and it solved with a relative gap of 5e�004.
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making use of the MPL modeling language and solved using the XPRESS-MP solver. In all, nine
sets of weights for the four stakeholders were applied; these weights appear in Table 5 and are
displayed in 4-tuples of the form ðw1;w2;w3;w4Þ corresponding, respectively, to the planner, the
environmentalist, the conservationist, and the developer. For example, case 9 represents a weight
of 1 for each of the stakeholders.
These nine cases require different objective weights for the weighted problem; there are two

main groups of cases. Group one is from the single perspective of one stakeholder. For example,
case 1 has weights of (1,0,0,0), which correspond to considering only the planner’s perspective.
Consequently, there are four of these single objective optimization cases: case 1 (‘‘Planner
Alone’’), case 3 (‘‘Environmentalist Alone’’), case 5 (‘‘Conservationist Alone’’), and case 7
(‘‘Developer Alone’’). Land development plans determined as solutions to these four
optimizations do not necessarily represent Pareto optimal solutions (unless they are unique
solutions [11]). These results are for purposes of comparison with the Pareto optimal solutions.
The second group of cases considers strictly positive weights for each of the stakeholder

perspectives resulting in Pareto optimal solutions (indicated by ‘‘Pareto’’ in the title of these



ARTICLE IN PRESS

S.A. Gabriel et al. / Socio-Economic Planning Sciences 40 (2006) 212–248 235
cases). Case 9 involves an equal weight of 1 for each of the stakeholder’s objectives. This case is
contrasted with the other four cases (cases 2, 4, 6, and 8) in which one of the stakeholders is
highlighted with the largest weight of one assigned to it; the weights for the other three
stakeholders is set to 0.001. For example, case 2 assigns a weight of one to the planner and 0.001
to the other three stakeholders. In addition, the last column of this table represents the relative
gap value, i.e., best solution� best boundj j=best bound, used with the solver, a value of zero
generally not leading to reasonable solution times. We tried to use the same relative gap (5e�005)
for all the cases, but found that the time to find the solution for the Developer Pareto case
lengthened dramatically. Thus, we increased the relative gap from 5e�005 to 5e�004 for this
troublesome case to save time without sacrificing solution quality. With these relative gap values
selected, the range of computational times were from less than a second (0.29 s) for the
Conservationist Alone case to a little over 6 h (6 h and 9min) for the Developer Pareto case. Table
6 presents the values of the different objectives evaluated for each of these nine cases.
Analysis of these nine cases focuses on two areas. First, we examine the tradeoffs between the

various stakeholders for Pareto optimal vs. single objective solutions. Next, we focus on the
planner’s compactness objective and highlight some key findings.
For the analysts using our model, the selection of the weights is not a trivial task since different

weights will generally produce different results [27]. The selection of the weights depends on the
importance of each objective, the context of the problem, and the scaling factors [27]. Miettinen
[11], however, points out the confusion in whether the weights reflect the importance of each
objective or the rate at which the decision maker is willing to trade off values of the objective
functions. Previous analysis [36] based on fixing the sum of the weights has been done, but is most
applicable when only two objective functions are present. With two objectives, one could just
compute the weighted average by setting w1 þ w2 ¼ 1 and then solving fmin : w1f 1ðxÞ þ ð1�
w1Þf 2ðxÞg subject to the feasibility constraints for different values of w1 in the range (0,1). Another
approach to set the weights is the Analytical Hierarchy Process [37]. This process is a
mathematical approach to evaluate preferences among disparate stakeholders and could be used
in an interactive mode, as discussed in Section 4.5.
4.3. Analysis of tradeoffs

Table 6 illustrates how the individual objectives reach their optimal values when they are
evaluated alone (shown in bold) and when other stakeholder interests are considered. Thus, this
table provides valuable information on the explicit tradeoffs made in considering all the
stakeholder perspectives, and is therefore important in the Smart Growth planning process.7

When considering the single objective optimization, the conservationist achieves an objective of 0
(i.e., no environmentally sensitive parcels are developed).
Consider first the perspective of the planner who is trying to maximize the compactness of the

developed land in all four of the quadrants taken separately. If we consider just the planner’s
single objective by itself (case 1), the optimal level of compactness of the developed land8 is
7Different weights may produce different tradeoffs. Table 6 is meant for illustrative purposes.
8As measured by minimizing the square of the length of the diagonal of the outer rectangle that surrounds all

developed parcels.
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Table 6

Value of the objective functions by case

Case Description Maximum distance

squared km2 (mi2)

Percentage of

optimal

Imperviousness

change km2 (mi2)

Percentage of

optimal

1 Planner alone 286.06 100.0% 0.01840 115.5%

(110.45) (0.0071)

2 Planner Pareto 286.06 100.0% 0.02391 150.1%

(110.45) (0.00923)

3 Environmentalist alone 318.72 111.4% 0.01593 100.0%

(123.06) (0.00615)

4 Environmentalist Pareto 286.06 100.0% 0.01594 100.1%

(110.45) (0.00616)

5 Conservationist alone 325.96 113.9% 0.01755 110.2%

(125.86) (0.00678)

6 Conservationist Pareto 286.06 100.0% 0.02377 149.2%

(110.45) (0.00918)

7 Developer alone 333.69 116.7% 0.02384 149.6%

(128.84) (0.0092)

8 Developer Pareto 286.06 100.0% 0.02374 149.1%

(110.45) (0.00917)

9 All perspectives 286.06 100.0% 0.02337 146.7%

(110.45) (0.00902)

Numbers are better if: Smaller Smaller Smaller Smaller

Case Description Env. sensitive area

km2 (mi2)

Percentage of

optimal

Profit millions of $

US

Percentage of

optimal

1 Planner alone 0.87 Infinite $1317.56 69.2%

(553.80)

2 Planner Pareto 2.68 Infinite $1686.95 88.7%

(1712.49)

3 Environmentalist alone 1.86 Infinite $1148.84 60.4%

(1192.03)

4 Environmentalist Pareto 1.30 Infinite $1273.13 66.9%

(833.64)

5 Conservationist alone 0.00 0/0 $1266.36 66.5%

(0.00)

6 Conservationist Pareto 0.02 Infinite $1891.61 99.4%

(11.67)

7 Developer alone 4.09 Infinite $1902.89 100.0%

(2616.62)

8 Developer Pareto 1.77 Infinite $1899.82 99.8%

(1132.39)

9 All perspectives 2.56 Infinite $1672.72 87.9%

(1640.65)

Numbers are better if: Smaller Larger Larger

S.A. Gabriel et al. / Socio-Economic Planning Sciences 40 (2006) 212–248236
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286.06 km2 (110.45miles2). Normalizing so that this value is 100%, the planner does worse
when the other three stakeholders’ objectives are optimized one at a time. In particular,
the compactness measures worsen by 11.4%, 13.9%, and 16.7%, respectively, when optimizing
just for the environmentalist, the conservationist, and the developer, since other concerns
are more important for these other stakeholders. However when the five Pareto cases
are considered (‘‘Planner Pareto’’, ‘‘Environmentalist Pareto’’, ‘‘Conservationist Pareto’’,
‘‘Developer Pareto’’, ‘‘All Perspectives’’), the optimal compactness matches the ‘‘Planner
Alone’’ case.
The environmentalist obtains a solution with minimum change in imperviousness when

his perspective is considered by itself, resulting in an optimal value of 0.01593 km2. Once the
other stakeholders are considered either separately or from a Pareto perspective, the
environmentalist does worse. The environmentalist’s objective appears to be more sensitive
than the planner’s since the former worsens by abo ut 50% under the ‘‘Planner Pareto’’
perspective, but the planner does no worse than its single objective case under ‘‘Environ-
mentalist Pareto’’. The environmentalist’s objective also does particularly poorly under the
‘‘Developer Pareto’’ perspective. Table 6 indicates a 49.1% worsening in the change in
imperviousness due to accommodating the developer’s objective with a higher weight. Also, the
environmentalist’s objective similarly suffers when considering the ‘‘Conservationist Pareto’’ case.
Consequently, the environmentalist appears to be the most sensitive to the objectives of the other
stakeholders since it has the largest percentage deviations from optimality when considering the
other stakeholders.
The conservationist is able to steer development out of the environmentally sensitive areas when

it is the only perspective. However, only a slight change occurs in this objective function when the
other perspectives receive a small positive weight (the ‘‘Conservationist Pareto’’ case). Lastly,
Table 6 indicates some significant worsening in the developer’s optimal objective function when
the other stakeholders are involved. For example, the developer’s profit drops by about 33%
when considering the ‘‘Environmentalist Pareto’’ case.
In Table 7, the developer scenarios selected are nearly or equal to the maximum possible

number of parcels without exceeding the upper bound. This conclusion makes sense because profit
increases as more parcels are developed. The limiting factors are the upper bounds and other
constraints or perspectives that need to be considered. In contrast, the environmentalist chose to
develop nearly or equal to the minimum amounts required by the bounds, reflecting the goal of
minimal increase in imperviousness.
In Fig. 9, the data for the nine cases are also presented using a Value Path graph, a widely used

technique to present multiobjective solutions [11,27]. The actual numbers for this analysis appear
in Table 8. One way to present the results is by using the horizontal axis to represent the different
objective functions and the vertical axis for their numerical results. For each weight, the values of
the objective functions are plotted and joined by line segments, creating a piecewise linear
representation of the weights selected. To better present the data graphically, we have normalized
the results of the nine cases considered. Since the Smart Growth problem is a multiobjective
minimization, we have scaled the results of all objective functions to be in the range [0,1], where 0
is the most desirable value and 1 is the least desirable value. Using this scale, the maximum profit
has a zero value and the minimum profit has a value of one. Values closer to zero are thus more
desirable for all perspectives.
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Table 7

Number of units or acres developed by each perspective in each zone, lower and upper bounds

Case Description Units RLD Units RMD Units RHD Area commercial

km2 (mi2)

Area industrial

km2 (mi2)

1 Planner alone 1745 8190 4887 1.641 0.985

(0.634) (0.380)

2 Planner Pareto 2331 12,285 6384 1.641 1.027

(0.634) (0.397)

3 Environmentalist alone 1554 8190 4256 1.094 0.724

(0.423) (0.279)

4 Environmentalist Pareto 1554 8190 4256 1.096 0.724

(0.423) (0.279)

5 Conservationist alone 1554 8296 4687 1.481 1.027

(0.572) (0.397)

6 Conservationist Pareto 2329 12,282 6372 1.638 1.027

(0.632) (0.397)

7 Developer alone 2331 12,285 6384 1.641 1.027

(0.634) (0.397)

8 Developer Pareto 2331 12,285 6381 1.641 1.027

(0.634) (0.397)

9 All perspectives 2331 12,285 6384 1.641 0.740

(0.634) (0.286)

Lower bound 1554 8190 4256 1.094 0.724

(0.423) (0.279)

Upper bound 2331 12,285 6384 1.641 1.085

(0.634) (0.419)

Available 971 3359 1926 0.690 1.027

(0.266) (0.397)

Available from 99 7572 30,998 62,242 31.612 31.612

(12.205) (12.205)

Total availablea 8543 34,357 64,168 32.301 32.639

(12.472) (12.602)

aAssuming that all the available parcels from 99 go to each category indicated.
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We have used Eqs. (21) and (22) to normalize the data

Xnor ¼
X i �Mini fX ig

Maxi fX ig �Mini fX ig
, (21)

for those variables whose lower values are preferred to higher values (Compactness,
Imperviousness Change, Environmentally Sensitive Area), and

Ynor ¼
Maxi fY ig � Y i

Maxi fY ig �Mini fY ig
(22)

for those variables whose higher values are preferred than lower values (Profit).
The different solutions are labeled 1–9 in order to better track the relative values for each

objective. Where two or more solutions converge on one point, we have used different line-types
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Fig. 9. Value path representation for all cases.

Table 8

Value path information

Case description Normalized maximum

distance squared

compactness

Normalized

imperviousness

change

Normalized

environmentally

sensitive area

Normalized

profit

1. Planner alone 0.00 0.31 0.21 0.78

2. Planner Pareto 0.00 1.00 0.66 0.29

3. Environmentalist alone 0.69 0.00 0.45 1.00

4. Environmentalist Pareto 0.00 0.00 0.32 0.84

5. Conservationist alone 0.84 0.20 0.00 0.84

6. Conservationist Pareto 0.00 0.98 0.00 0.01

7. Developer alone 1.00 0.99 1.00 0.00

8. Developer Pareto 0.00 0.98 0.43 0.00

9. All perspectives 0.00 0.93 0.63 0.31
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for clarity. One remarkable, although expected conclusion is that those solutions associated with
the maximum profit (6—Conservationist Pareto, 7—Developer Alone, and 8—Developer Pareto)
are associated with the highest level of imperviousness change. Also, those solutions with low
imperviousness change have a low profit value.
The compactness and the imperviousness change and profit can be divided into two groups. In

the case of compactness, the two groups are either zero (best possible case) or one of three values
(0.7, 0.8 and 1). In the case of the imperviousness change, there are three low values (0, 0.2 and
0.3) and a group of high values (0.9, 1). The profit values are also separated, but to a lesser extent
as compared to the other objectives.
4.4. Analysis of the compactness objective

Since the model in (20) considers compactness of each quadrant separately, it is convenient to
analyze each individually. Fig. 10 presents details of each quadrant with two key rectangles drawn
one inside the other. The inner rectangle surrounds all previously developed parcels and the outer
rectangle encloses all the parcels in that quadrant, or the quadrant rectangle. Parcels that do not
belong to the quadrant in question have been removed for clarity of presentation. Each quadrant
has a different potential for compactness. For example, the inner rectangles for quadrants 2 and 4,
enclosing all previously developed parcels, are almost the same as the outer rectangles, which
include all the parcels. There is not much choice relative to compactness in terms of which new
parcels to select for development. Conversely, quadrants 1 and 3 have more potential for
compactness given their configuration of parcels that are already developed or available for
development. Thus, a key ratio related to the efficiency of the compactness can be defined for each
quadrant, i.e., the ratio of the squared diagonal of the inner rectangle to the squared diagonal of
the quadrant rectangle. A lower value means a greater potential for more compactness.9 Table 9
provides these ratios for each quadrant based on dividing key measures for the inner rectangle by
the corresponding measures for the outer rectangle. These key measures are: the diagonal squared,
the unsquared diagonal, and the area. Table 10 shows the ratio of the new inner rectangle
(including parcels chosen to be developed) vs. the former inner rectangle (just previously
developed parcels) for each case. A value of more than one means that the developed area has
been expanded.
The results of these cases can also be presented using value paths, as shown in Fig. 11.
4.5. Policy implications

Currently, decision-making about land development is largely decentralized and primarily
dependent on policies of local municipalities and counties. Meanwhile, the consequences can be
more far-reaching. For instance, precious natural resources often span across political boundaries
and land developers rarely consider any balance between the geographic demand for future
growth and government policies that provide the best business climate for development. Given
9As far as we know, these compactness measures are unique to our paper. They were introduced merely to convey

that certain quadrants might have a ‘‘better chance’’ of keeping development in a compact region. Planners could use

these compactness measures as one of a set of criteria to guide them in planning decisions about land development.
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Table 9

Compactness potential ratio calculation for each quadrant

Quadrant Diagonal squared ratio Diagonal ratio Area ratio

1 0.70 0.84 0.72

2 0.98 0.99 0.96

3 0.54 0.73 0.51

4 0.91 0.96 0.92

S

EW

N

Quadrant 1

0 3 6kilometers

Quadrant 1 Previously Developed Smallest Box
Quadrant 1 Smallest Box
Quadrant 1 Parcels
Undeveloped Parcels

Quadrant 2

0 3 6kilometers

Quadrant 2 Previously Developed Smallest Box
Quadrant 2 Smallest Box
Quadrant 2 Parcels
Undeveloped Parcels

Quadrant 3

0 3 6kilometers

Quadrant 3 Previously Developed Smallest Box
Quadrant 3 Smallest Box
Quadrant 3 Parcels
Undeveloped Parcels

Quadrant 4

0 3 6kilometers

Quadrant 4 Previously Developed Smallest Box
Quadrant 4 Smallest Box
Quadrant 4 Parcels
Undeveloped Parcels

Fig. 10. Inner and quadrant rectangles for Quadrant 1 (left), Quadrant 2 (bottom right), Quadrant 3 (top center) and

Quadrant 4 (top right).
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these real dimensions to the land development problem, the ideas and results set forth in this
paper suggest that Smart Growth might be viewed more broadly as a planning framework that
can accept input from a wide spectrum of stakeholders.
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Table 10

Compactness ratios for each quadrant based on the square of the diagonals

Case Description Q1 ratio Q2 ratio Q3 ratio Q4 ratio

1 Planner alone 1.00 1.00 1.00 1.05

2 Planner Pareto 1.00 1.00 1.00 1.05

3 Environmentalist alone 1.39 1.00 1.43 1.05

4 Environmentalist Pareto 1.00 1.00 1.00 1.05

5 Conservationist alone 1.42 1.02 1.43 1.09

6 Conservationist Pareto 1.00 1.00 1.00 1.05

7 Developer alone 1.38 1.00 1.86 1.09

8 Developer Pareto 1.00 1.00 1.00 1.05

9 All perspectives 1.00 1.00 1.00 1.05
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Fig. 11. Value path representation for the developer cases.
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The tools, rather than the specific results of this paper, suggest a new approach available for
policy-makers to address Smart Growth. There are two ways that these tools might play an
important role in future land development decisions. First, the planner or policy maker could use
this approach to predict future development outcomes from hypothetical new policies or land
development related programs. The planner would need to quantitatively express the implications
of a possible new policy in terms of its impacts on existing objective functions or constraints.
Pareto optimal land development decisions would allow the policy maker to quantitatively and
explicitly examine and critique estimated future growth. With this tool, the planner could refine
potential new policies or programs in an iterative way until the predicted outcome matches the
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planner’s intent. Second, planners can use these tools for arbitration. In this case, the tool could
be used in real time at a meeting or hearing that brings together the range of interested
stakeholders; however, prepared scenarios might need to be run ahead of time, given the
computational complexity of solving problems in real time. Stakeholders could be surveyed on
their values and desires and have these views translated into this multiobjective framework at that
meeting. An iterative approach would be in order as the different parties refine and negotiate their
views. The tool would aid in the simulation and visualization of these negotiated outcomes,
providing a common language for different parties to exchange ideas and ensuring that decisions
are being made objectively and optimally among all parties.
5. Conclusions

In this paper we have presented a multiobjective optimization formulation for Smart Growth in
land development based on recognizing the objectives of four different types of stakeholders: the
government planner, the environmentalist, the conservationist, and the land developer. This paper
presented potential objective functions that might be posed by these various stakeholders. The
resulting model was applied in the context of an illustrative example for a GIS-based data set for
Montgomery County, Maryland.
This model had both linear and quadratic objective functions subject to linear and binary

constraints. Using the weighting method [24] for determining Pareto optimal points resulted in
QMIPs to be solved for each choice of positive weights applied to the stakeholder objective
functions. The quadratic objective resulted from considering compactness of the developed area
and represented the government planner’s perspective. While other researchers have considered
alternative formulations for compactness, our choice is advantageous since it represents a
computationally attractive approach to model efficient infrastructure development. The weighted
problems are convex QMIPs so that their relaxed versions, solved as part of the integer
programming solution methodology, ensure that local solutions are global ones. Combined with a
state-of-the-art solver for QMIPs, we have been able to solve rather large instances of these
problems with some 3500 variables (mostly binary) and over 23,000 constraints. To illustrate the
tradeoffs between stakeholders’ individual objectives, we have considered nine different sets of
weights and provided an analysis of the results.
This paper demonstrates the value of applying concepts of multiobjective optimization to the

complex problem of Smart Growth and land use planning. The specific stakeholders identified
and their proposed objective functions, while reasonable, are intended merely to illustrate how
these concepts can be applied to this problem. The framework shown here can easily be modified
to include other stakeholders’ views or different objective functions. This process necessitates all
those involved in the decision-making process to formulate explicit and quantifiable descriptions
of their goals and constraints. Such formulations could serve to streamline discussions between
different parties with a stake in the future development of a county, state, or region.
This paper also demonstrated the value of GIS technology that involves a geographic

component in addressing decision making. The GIS was used at the front-end of this analysis to
derive and store the quantities that were the focus of each of the stakeholders’ objectives, as well
as many of the constraints. Further, after optimizations were completed, the GIS provided a
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visual presentation of the alternative outcomes associated with the nine illustrative scenarios that
were considered.
Also presented were several mathematical results concerning both the existence of a solution to

this multiobjective optimization problem as well as the convexity of the QMIP weighting
problems solved.
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Appendix

The following assumption is needed for later analysis.

Assumption 1. For each parcel i,
(a)
 rowN(i)4rowS(i), i.e., the parcel has a positive height,

(b)
 colE(i)4colW(i), i.e., the parcel has a positive width.
A.1. Feasibility

The feasible region to the multiobjective model (20) may be empty. There are many reasons why
this problem may be infeasible. We illustrate with two cases. For example, when the constants
minRLD and maxRLD are chosen so that

P
i2S11

unitsi þ
P

i2S99
unitsiominRLDomaxRLD.

(17a) can never be satisfied sinceX
i2S11

unitsi di þ
X
i2S99

unitsi RLDip
X
i2S11

unitsi þ
X
i2S99

unitsiominRLDomaxRLD.

Another case is when minRLDomaxRLDo
P

i2S11
unitsi there are more units in S11 than are

actually needed, i.e., maxRLDo
P

i2S11
unitsi. Thus, some parcels should not be developed.

Moreover, none of the unassigned parcels need to be developed.
The main question is how to identify which parcels will remain undeveloped. Due to the binary

nature of the development variables di, the function
P

i2S11
unitsi di is ‘‘lumpy’’. This feature makes

the following infeasibility possible: Suppose that the lower and upper bounds on the number of units
are minRLD ¼ 380; maxRLD ¼ 400 but that

P
i2S11

unitsi ¼ 415. To satisfy (17a), we would want to
find a set of parcels D � S11 such that

P
j2D unitsj 2 ½15; 35� and then set dj ¼ 0; j 2 D; di ¼

1; 8i 2 S11 �D: This result would not be possible if the smallest number of units for any parcel in
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S11 were larger than 35. If we designate the parcel in S11 with the smallest number of units as j, this
result is clear since for any D such that fjg � D � S11,

P
i2S11�D unitsip

P
i2S11�fjg

unitsiominRLDomaxRLD. A natural question is whether (17a) can be satisfied with some units
from the S99 pool of unassigned parcels in this case. The answer is no since by (18a),P

i2S11
unitsi4maxRLD4minRLD, which forces yRLD ¼ 0 (otherwise a contradiction), which in turn

forces RLDi ¼ 0; 8i 2 S99 via the other part of (18a), namely,
P

i2S99
RLDi unitsipMyRLD. Thus, in

this case there is also no feasible solution to (20) because of the ‘‘lumpiness’’ of the data.

Theorem 1. The objective to the weighted problem for (20) is convex in its variables as long as the

weights w1;w2;w3;w4X0.

Proof. Consider the function f ðrN;q; rS;q; cE;q; cW;qÞ ¼ ðrN;q � rS;qÞ
2
þ ðcE;q � cW;qÞ

2. This function is
convex in the variables rN;q; rS;q; cE;q; cW;q since its Hessian matrix

Hq ¼

2 �2 0 0

�2 2 0 0

0 0 2 �2

0 0 �2 2

0
BBB@

1
CCCA

has eigenvalues f0; 0; 4; 4g so that it is (symmetric) positive semi-definite, or equivalently that f is
convex [33]. The weighted objective function is the positive sum of convex functions. &

Theorem 2. Assuming the weighted problem to (20) has an optimal solution and Assumption 1 holds,
then the constraints (9a)–(9d) ensure that rN;q; rS;q; cE;q; cW;q correspond, respectively, to the
northernmost, southernmost, easternmost, and westernmost borders of all the developed parcels in

subdivision q for q ¼ 1; . . . ;Q.

Proof. Let x� ¼ d�i 8i 2 S;RLD�i ;RMD�i ;RHD�i ;COM�i ; IND�i ;8i 2 S99;
�

y�RLD; y�RMD; y�RHD;
y�COM; y�IND; w�RLD; w�RMD; w�RHD; w�COM; w�IND; ðrN;qÞ

�; ðrS;qÞ
�; ðcE;qÞ

�; ðcW;qÞ
�; q ¼ 1; . . . ;Qg be an

optimal solution to the weighted problem to (20). There are two cases to consider.
For case 1, assume that for subdivision q there is at least one developed parcel in a solution. By

(9a), (9b), and Assumption 1, we see that for a developed parcel j ðrS;qÞ
�prowSðjÞorowNðjÞpðrN;qÞ�

so that ðrN;qÞ
�
� ðrS;qÞ

�40. Suppose for sake of contradiction that for all indices i, (9b) holds as a
strict inequality. Consider the feasible value for rN;q of r̂N;q ¼ ðrN;qÞ

�
� g, where g is sufficiently small

and satisfies 0ogo2ðrN;qÞ
�
� ðrS;qÞ

� and all other values are the same as in x�. Then we have

½ðr̂N;qÞ � ðrS;qÞ
�
�2 þ ½ðcE;qÞ

�
� ðcW;qÞ

�
�2

¼ ½ððrN;qÞ
�
� gÞ � ðrS;qÞ

�
�2 þ ½ðcE;qÞ

�
� ðcW;qÞ

�
�2

¼ ½ðrN;qÞ
�
� ðrS;qÞ

�
�2 þ ½ðcE;qÞ

�
� ðcW;qÞ

�
�2 � 2½ðrN;qÞ

�
� ðrS;qÞ

�
�gþ g2

o½ðrN;qÞ� � ðrS;qÞ��2 þ ½ðcE;qÞ� � ðcW;qÞ
�
�2
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as long as the function yðgÞ ¼ �2½ðrN;qÞ
�
� ðrS;qÞ

�
�gþ g2o0. This result is guaranteed since yðgÞ has

roots at f0; 2ððrN;qÞ
�
� ðrS;qÞ

�
Þg and is negative in between these roots. Thus, there is a

contradiction to the optimality of x� showing that there must be an index i for this subdivision
since (9b) holds as an equality. Similar reasoning applies to (9a), (9c), and (9d) ensuring the
desired result.
For case 2, assume that for the subdivision q, no parcels are developed in an optimal solution

x�. In this case, the northernmost, southernmost, easternmost, and westernmost borders are
arbitrary since the set of developed parcels is vacuous. However, to make sense, we must have
ðrN;qÞ

�
XðrS;qÞ

�; ðcE;qÞ
�
XðcW;qÞ. But (9a)–(9d) show that

rS;qprowSðiÞ þM and rowNðiÞ �MprN;q,

cW;qpcolWðiÞ þM and colEðiÞ �MpcE;q

which, in conjunction with the other constraints, allows for any ordering between the pairs of
variables ½ðrN;qÞ

�; ðrS;qÞ
�
�; and ½ðcE;qÞ

�; ðcW;qÞ�, given that M is a sufficiently large positive value.
Hence, by an optimality argument, it must be the case that ðrN;qÞ

�
¼ ðrS;qÞ

�; ðcE;qÞ
�
¼ ðcW;qÞ

� to
minimize the objective function term for this subdivision q. Such values make sense in light of the
vacuous set of developed parcels for the subdivision. &
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